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Coarsening of particles connected by 
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This work theoretically reinvestigates the coarsening of particles controlled by diffusion 
through a dislocation network, when the dislocation spacing of the network is larger than 
the maximum particle size and the volume fraction of the particles vanishes. Both a three- 
dimensional network and a plane one, such as that which might be encountered at a low- 
angle grain boundary, are treated. It is considered here that the number of dislocation pipes for 
diffusion increases with distance away from the particle. Under certain reasonable assump- 
tions, a t 1/4 steady-state coarsening kinetics is found. The origin of the differences between the 
present kinetic results (t 1/4) and those predictions previously reported in the specialized litera- 
ture (tl/a), for similar dislocation geometries, are discussed. The effect of the dislocation 
annihilation phenomenon on the growth kinetics is also examined qualitatively. 

Nomenclature  
A 

bi(i = 1 , 2 , . . . )  
¢ 

Ctrl 

Cr 

C~ 

d 
D~ 

g(u) 

J 
m 

Ni(i = 1 , 2 , . . . )  

cross sectional area of the pipe 
dislocations p 
constants qi(i = 1, 2 , . . .  ) 
fractional concentration of solute r 
at a given point at pipe disloca- R 
tions r* 
mean fractional concentration of r* 
solute in the matrix 
fractional concentration of solute t 
in the matrix in the vicinity of a to 
particle of radius r T 
fractional concentration of solute u(=  r/r*) 
in the matrix in the vicinity of a Um 
plane particle/matrix interface 
dislocation spacing 
coefficient of solute diffusion x 
along pipe dislocations, (moles 
per unit time, unit length and unit 7 
fractional concentration differen- t/ 
tial) ~b 
steady-state distribution function f~ 
of the normalized sizes of the v 
particles 
a positive integer 
kinetic exponent 
number of pipe dislocations con- 
tributing to the diffusion area 

within different ranges of x speci- 
fied in the text 
a positive integer 
constants 
radius of a given particle 
gas constant 
critical radius 
critical radius at the onset of 
coarsening 
time 
time at the onset of coarsening 
absolute temperature 
normalized size of a given particle 
maximum allowable normalized 
size in the steady-state for particle 
coarsening 
radial distance measured from 
the centre of a given particle 
specific interfacial free energy 
a function of ~b 
volume fraction of the particles 
molar volume of the particles 
a function which tends asymp- 
totically to a constant value as 
time tends to infinity 
the sum of an infinite series, 
defined in the text 
pseudo-time 

1. Introduct ion 
The equilibrium concentration of solute in a matrix, in 
the vicinity of a pure-solute spherical particle of radius 
r, is given by the Gibbs-Thomson equation: 

c~ = coo exp \ R T r ]  (1) 

This equation states that solubility increases as the 
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particle size decreases. Hence, a distribution of par- 
ticles in a matrix tends to coarsen by transfer of the 
atoms of solute from the smaller particles, which tend 
to dissolve, to the larger ones, which tend to grow. 

The coarsening of particles controlled by different 
solute-diffusion mechanisms has been analysed pre- 
viously. Accordingly, a specific value of the kin- 
etic exponent m, in an r* ~ film kinetics, has been 
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associated with each one of such mechanisms: m = 2 
for matrix/precipitate interface reaction [1]; m = 3 for 
matrix diffusion [1, 2], and m = 4 for grain-boundary 
diffusion [3-5]. For coarsening controlled by diffusion 
through a plane array of pipe dislocations, such as 
that which defines a low-angle grain boundary, and 
for the case when the dislocation spacing of such an 
array is much smaller than the particle size, a value of 
m = 4 has been also derived [5]. On the other hand, 
for coarsening controlled by diffusion through either 
a plane [5] or three-dimensional [6] array of pipe dis- 
locations, when the corresponding dislocation spacing 
is larger than the maximum particle size, a value of 
m = 5 has been obtained. As noted by Kreye [6], the 
physical situation associated with the problem of 
coarsening through pipe dislocations may correspond 
to that of second-phase particles nucleated at disloca- 
tion lines that were present in the matrix phase. More- 
over, pipe-diffusion-controlled coarsening might also 
be important in materials which are experiencing 
plastic deformation, as in the case of fatigue loading 
[7]. 

In this paper we theoretically reinvestigate the prob- 
lem of coarsening of spherical particles of pure solute 
connected by a pipe-dislocation array when the dis- 
location spacing is larger than the maximum particle 
size and the volume fraction of the particles vanishes. 
Both plane and three-dimensional arrays of disloca- 
tions are taken into account. The particle-dislocation 
geometries treated here are similar to those previously 
assumed, when analysing the above problem, by 
Ardell [5] for the plane case and by Kreye [6] for the 
three-dimensional one. Unlike the developments of 
Ardell and Kreye, in our approach it is considered 
that the number of dislocation pipes for diffusion 
increases with distance away from the particle. 

Our main result is that for a dislocation network 
that remains unaltered during particle growth, the 
coarsening process is found to obey, under reasonable 
assumptions, a t 1/4 kinetics. This kinetic result (t 1/4) 
differs from other theoretical predictions (fl/5) usually 
referred to in the specialized literature. The effect 
of the dislocation annihilation phenomenon on the 
coarsening kinetics is also discussed qualitatively. 

2. Theory 
In this section, the kinetic equation for the growth of 
a pure solute spherical particle which coarsens by 
solute diffusion through a network of pipe disloca- 
tions, when q5 = O, is first derived. Then, the steady- 
state coarsening kinetics and the corresponding distri- 
bution function of the particle sizes are determined. 

Because it is assumed that the dislocation spacing is 
larger than the maximum particle size, we can con- 
sider that the number of dislocations intersecting a 
particle, N~,  remains constant throughout its growth. 
For an illustrative purpose only, let us consider the 
situation of a dissolving particle. As the solute atoms 
emitted from such a particle move away from it, the 
dislocations contributing to the effective area of dif- 
fusion increase with the distance from the centre of the 
particle, x. In this work, it will be supposed that the 
number of dislocations contributing to the effective 

area of diffusion increases abruptly from N,. to N + ~, 
at a distance xi from the centre of the particle, for 
i = 1, 2 , . . . .  Moreover, for simplicity, it will be 
assumed that the solute flux is always radially oriented 
with respect to the centre of the particle. As the par- 
ticles are assumed to be infinitely apart (because 
~b = 0), then, from the condition of the constancy of 
the flux of the solute atoms, either absorbed or emitted 
by a given particle, we can write the solute concentra- 
tion at dislocations, c, as 

c = bi + q i x  x i  I <~ x < x i  (2) 

for i = 1, 2 . . . . .  We shall take x0 as equal to the 
radius of the particle, r, whereas x~ will be taken as 
equal to id, for i = 1, 2 , . . . ,  where d is a measure of 
the dislocation spacing of the dislocation network. 
This latter choice is related to the fact that it is 
assumed here that the dislocation network considered 
possesses properties of periodicity, the corresponding 
period (that is, the dislocation spacing) being roughly 
the same in all directions. It is also clear from the 
condition of the constancy of the flux of the solute 
atoms, that we must have 

Nl 
= q, (3)  

fo r  i = 1, 2 . . . . .  Thus,  the solute concent ra t ion  at a 
distance xj from the centre of the particle, for j ~> 2, 
can be expressed as 

J 

cj = Cr 4- q, ( d  - r) 4- d ~ q~ (4) 

where cr is the solute concentration at the particle/ 
matrix interface. As j tends to infinity, the solute 
concentration must tend to the value of the average 
solute concentration in the matrix, %. Then, from 
Equations 3 and 4 we have: 

(C m - -  Cr) 
ql  = ( 5 )  

N E d ~  - r 

where ~ is the sum of the infinite series: 

d = ~ 1  
1 N/  (6 )  

Equation 5 corresponds to the solute concentration 
gradient at the particle/matrix interface. Notice that 
such a gradient could also have been obtained by 
assuming that solute diffusion takes place along N~ 
dislocations, up to a distance N1 de  from the centre of 
the particle, where the solute concentration is set equal 
t o  C m . 

So, from Equation 5, and by use of the first Fick's 
law, we can write the rate equation for the growth of 
a particle, in moles per unit time, as 

4rcr 2 dr (% - cr) 
f ~  d t  = D a N ~ A  N ~ d ~  - r (7) 

We shall now suppose that all positions of the 
dislocation network at which particles are situated, 
are geometrically equivalent, in such a manner that it 
can be considered that both Nl and ¢ have values 
which are the same for all particles. Also, if the 
dislocation array remains unaltered during particle 
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coarsening, then N1, d and ~ can be supposed to be 
constants. The above assumptions will be employed in 
the following. 

We shall define the critical radius of a particle, r*, 
as the radius of a particle which is instantly neither 
growing nor shrinking. Clearly, the solute concentra- 
tion at the particle/matrix interface of such a particle 
must be equal to Cm. Then, by expanding Equation 1 
into a series of the first order, we have 

27f~c~ 
Cm - -  C m  = RTr* (8) 

Thus, by means of Equations 7 and 8 we can write 

dr 4 2DdN1ATf~2c~ ( u -  1) 
- ( 9 )  

dt ~zRT (Nld~ - r) 

where cr in Equation 7 has been obtained by expand- 
ing Equation 1 into a series of the first order, and 

r 
u = r-- ~ (10) 

is the normalized size of the particle. We shall now 
suppose that the product N~ d~ in Equation 9 is suf- 
ficiently large, so that little error is committed if we 
substitute NI d ~ for (N~ d ~ - r) in the denominator of 
the right-hand side of such an equation. Then, from 
Equations 9 and 10 we have 

du 4 
= Y (U - -  1 )  - -  U 4 (1  1)  

dz 

where 

and 

2DdAT~2c~ dt 
v - rtRTNld~ dr .4 (12) 

z = In (r .4) (13) 

It is clear from previous work [5, 8], that in the 
present case a steady state for particle coarsening is 
possible if dua/dz is a function of u only, i.e. if v tends 
asymptotically to a constant value. Such a value and 
that of the maximum allowable normalized size of the 
particles, urn, can be obtained in the usual manner, 
i.e. by making (du4/dz) and d(du4/dz)/du as equal to 
zero at u =Um [5, 8]. This latter procedure yields 
v = 4(4/3) 3 and Um = 4/3. Hence, on integrating 
Equation 12, we can express the steady-state coarsen- 
ing rate equation as 

r * 4 - - r * 4  = (~) 3 DdATf~2c~27zRTd¢ ( t - t ° )  (14) 

The procedure for determining the corresponding 
steady-state distribution function of the normalized 
sizes of the particles, g(u), has been previously pre- 
sented in the Appendix of [5]. The expression derived 
there is 

3U3 [fS 3u3du .~ 
g (U) -- (du4/d.c) exp (du4/d.c)j (15) 

where, for the present case, (du4/dz) is given by 
Equation 11. In this way, the explicit expression for 
g(u) associated with our problem is 
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4 ^  

u 

Figure 1 Theoretical steady-state distribution function of the 
normalized size of the particles, corresponding to Equation 16. 

( . g(u) = (3)4 1,/3 1 - - -  1 + 5 + -i-6-J 

x exp - (4/ u) 21/26 

x I t a n - ' ( 1  + 3 u / 4 )  
~,77 j - t a n  '~1/21} 

(16) 

for u < 4/3. Equation 16 has been represented graph- 
ically in Fig. 1. 

It is seen from Equation 14 that the main difference 
between the plane and three-dimensional cases lies in 
the value of 3, or equivalently of the product N~ 3. For 
instance, for a three-dimensional network we can 
crudely take Ni as Nli 2, and then the product N1 
equals ~2/6 [9]. On the other hand, for a plane array of 
dislocations, such as those which might be encoun- 
tered at low-angle grain boundaries, we can roughly 
take N, as N~ i, for i < p, where p can be considered as 
a measure of the sub-grain size in units of d. As long 
as in this latter situation the first p terms of the series 
N1 ~ correspond to the first p terms of the harmonic 
series, and taking into account that the aforementioned 
series diverges as in (p) [10], it is clear that for the 
plane case, the value of N1 { will be chiefly determined 
by the value ofp.  Having in mind that the validity of 
Equation 14 is restricted to the case when the ratio 
r/Nld{ is sufficiently small for all the particles, 
it follows that particles which are situated on a 
three-dimensional dislocation network which remains 
unaltered throughout particle coarsening, may follow 
a t 1/4 kinetic if the particle size remains very small in 
comparison with the dislocation spacing. It is also 
concluded that particles which are located on a plane 
array of dislocations which remains stable during the 
coarsening process, may obey a t 1/4 kinetic either if the 
particle size is kept very small with respect to the 
dislocation spacing, or if the sub-grain size (or, equiv- 
alently, p) is sufficiently large, or both. 

3. Discussion 
In studying the coarsening of particles controlled by 
solute diffusion through a network of pipe disloca- 
tions, when the dislocation spacing is larger than the 



maximum particle size, a t ~/5 kinetic had been pre- 
viously derived by Kreye [6] for the case of a three- 
dimensional network, and by Ardell [5] for the case of 
a plane network. We shall now explain the reasons 
why these results differ from the t TM kinetics derived in 
this paper for the above problem. 

Unfortunately, Kreye [6] did not describe in detail 
the solution of the aforementioned coarsening pro- 
cess. However, from inspection of the kinetic equation 
presented by him [6], it seems that Kreye assumed that 
solute emitted by a dissolving particle, for instance, 
diffused away from the particle along a constant 
number of dislocations, up to a distance from the 
centre of the particle equal to twice the radius of the 
particle. At this latter distance, the solute concentra- 
tion was set equal to Cm [6]. So, seemingly Kreye 
attempted to represent the solute diffusion from or to 
a given particle through the three-dimensional dis- 
location network, by diffusion of solute along a con- 
stant number of dislocations, between the particle and 
an imaginary surface sink of source of solute atoms, 
located at a distance 2r from the centre of the particle 
of radius r. In fact, from Equation 7 in this paper, it 
follows that, when ~b = 0, the analogy described is 
indeed plausible, provided that the above sink or 
source of solute atoms is located at a distance NI d~ 
from the centre of the particle. This latter value 
depends only on the geometry of the array of disloca- 
tions, which in the present work is assumed to be the 
same for all particles. So, if in Kreye's formulation the 
above sink or source of solute atoms were located at 
a distance N~ d ~ from the centre of the particle, then, 
for N~ d~ ~> r, a t I/4 steady-state coarsening kinetic 
would be obtained. 

The approach adopted by Ardell [5] in analysing the 
same problem treated in this paper, for the case of a 
plane array of dislocations, is essentially the same 
which were seemingly employed by Kreye [6] in study- 
ing the case of a spatial network. More precisely, 
Ardell considered that solute diffusion emitted from a 
dissolving particle, for instance, moved away from the 
particle along a constant number of dislocations, up to 
a distance from the centre of the particle equal to r + 
r*#l ,  where q is a function of the volume fraction of 
the particles, defined as r/ = 4qS~/2/[exp (4q~) F(½, 4q5)], 
with F denoting the incomplete gamma function. At 
the distance stated, the solute concentration was set 
equal to c m by Ardell [5]. Hence, Ardell tacitally 
assumed that solute diffusion from or to a particle, 
through the plane dislocation network, was equivalent 
to that corresponding to diffusion along a constant 
number of dislocations, between the particle and an 
imaginary lineal sink or source of solute atoms, 
located at a distance r + r*/~l from the centre of the 
particle. Therefore, we may now say that in the light 
of the derivation presented in Section 2, it follows that 
the approach adopted by Ardell is acceptable, at least 
when 4~ vanishes, provided that the imaginary surface 
sink or source of atoms is located at a distance N~ d 
from the centre of the particle (see Equation 7). In this 
manner, when this latter result is introduced in 
Ardell's approach then, for N~ d~ ~> r, a t 1/4 steady- 
state coarsening kinetic is derived. 

The analysis of the problem treated in this paper 
becomes much more complicated when the volume 
fraction of the particles is different from zero. In fact, 
the solute atoms are then absorbed after only a finite 
diffusion distance. The idea of Ardell [5] of introduc- 
ing q(~b), as explained in the preceeding paragraph, for 
taking into account the influence of ~b, should be 
considered as a guess only, especially in the light of the 
work of Brailsford and Wynblatt for matrix-diffusion- 
controlled coarsening [11]. These latter authors devel- 
oped a fully consistent method for the analysis of the 
exchange of solute atoms, in a statistical averaged 
sense, for coarsening controlled by lattice diffusion. 
Such a method was found [11] to be more adequate to 
deal with matrix-diffusion-controlled coarsening than 
that employed by Ardell [12] for treating the said 
problem which, in turn, is analogous to the method 
used by the same author [5] to deal with pipe- 
diffusion-controlled coarsening. 

Dislocation annihilation is a phenomenon frequently 
observed in the annealing of metallic materials as, for 
instance, in the case of previously cold-worked alloys. 
The effect of the dislocation annihilation phenomenon 
on the coarsening kinetics will be discussed here, 
within the frame of the theory presented in this paper. 
For this purpose, the values of d and ~ deduced in 
Section 2, will now be roughly considered as average 
values during the interval of time a solute atom dif- 
fuses through the dislocation network from a dissolv- 
ing particle to a growing one. It is obvious that at any 
given time (or pseudo-time), different values of d and 

should be considered for growing and dissolving 
particles. For simplicity, in the present approach the 
same functions d ( r * )  and ~(r*) will be considered for 
all particles, by taking into account that the distinc- 
tion stated above between growing and dissolving 
particles can be introduced in a rather crude manner, 
for example, by multiplying the right-hand side of 
Equation 7 by a suitable function of u. On the other 
hand, it will be supposed that the number of disloca- 
tions intersecting each particle, NI, remains constant 
throughout the coarsening process, So we can see 
from the preceeding considerations that Equation 12 
is still valid, but the product d ~ can be now considered 
as an increasing function of r*. For instance, if we 
suppose that the product d ~ increases linearly with r*, 
then it can be easily verified that in such a situation a 
t ~/5 steady-state coarsening kinetic is obeyed. So, it 
may be expected that the phenomenon of dislocation 
annihilation have influence on the value of the kinetic 
exponent of the coarsening kinetics. 

The presence of dislocations connecting particles 
has been reported in previous works [6, 7]. Catderon 
et  al. [7] studied the coarsening kinetics of particles 
connected by dislocations in an Fe-2.5% Ni-5.7% 
A1-2% Mo alloy, and a t ~/~ kinetic was encountered, 
thus suggesting matrix-diffusion-controlled coarsen- 
ing. On the other hand, a number of cases has been 
reported where values of the kinetic exponent ranging 
from 4 to 5 have been found [13-16], which might be 
associated with a coarsening controlling mechanism 
such as pipe-diffusion of the solute. Nevertheless, 
detailed experimental observations on the characteris- 
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tics of the dislocation network which might be present 
during particle coarsening are still lacking. 

4. Conclusions 
The particle coarsening controlled by diffusion 
through a three-dimensional and a two-dimensional 
network of pipe dislocations, when the dislocation 
spacing is larger than the maximum particle size and 
~b vanishes, was studied. It was considered that the 
number of dislocation pipes for diffusion increases 
with distance away from the particle. Under certain 
reasonable assumptions, a t 1/4 kinetic was derived. 
This kinetic result differs from other theoretical 
predictions usually referred to in the literature. 
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